Skeletal Muscle Stimulants. Substituted Benzoic Acids

ROBERT BRUCE MOFFETT AND ANDREW H. TANG

Research Laboratorics of The Upjohn Company, Kalamazoo, Michigan 49001

Received March 21, 1968

A number of hydrocarbon- and halogen-substituted benzoic acids have been found to produce myotonic symptoms in animals similar to those produced by some veratrum alkaloids. 3-Chloro-2,5,6-trimethylbenzoic acid (23) was the most active. Structure-activity relationships pertaining to the myotonic effects are discussed.

As a result of biological screening, a number of substituted benzoic acids have been observed to produce a peculiar syndrome in animals which manifests itself in spasms of the extremities, usually triggered by exertion. The overt symptom is not unlike the clinical symptoms in myotonia congenita (Thomsen's disease). Studies on curarized animals with direct stimulation demonstrated a prolongation of muscle contraction accompanied by repetitive EMG afterdischarge. This effect on the skeletal muscle is similar to that reported for some veratrum alkaloids, phenanthrene-9-carboxylic acid, 2,4-dichlorophenoxyacetic acid, etc.,¹ but none is as potent or selective for skeletal muscle as our more active compounds. A description of the screening test and detailed biology of our most active compound, 3chloro-2,5,6-trimethylbenzoie acid (23), is reported elsewhere.²

A material synthesized by Newman, et al.,³ and reported by them to be 2-chloro-3,5,6-trimethylbenzoic acid (24) was very active in our test and much of our early work was done on this material. It was subsequently found, by nmr spectroscopy and gas-liquid partition chromatography (glpc) to contain up to 45% of the isomeric acid 23. Repeated attempts to separate these compounds by crystallization, sublimation, and column chromatography failed, but they can be separated by glpc, preferably as the methyl esters. A more practical method for the separation of substantial quantities of 23 and 24 was devised as shown in Scheme I.

Newman's proof of structure³ was conclusive for the reported structure 24, but since the yields of his derivatives were not quantitative, the presence of the other isomer could not be detected. The structure of this isomer (23) was established as follows (Scheme I). Nmr measurements on the mixture showed only two peaks in the aromatic region at about δ 7.18 and 7.27. If either component had contained a hydrogen ortho to the earboxyl there would have been a peak further downfield.⁴ Hydrogenolysis of the mixture selectively removed the chlorine from the m-chloro acid (23). That the chlorine was removed from 23 rather than from 24 was shown by the isolation of 2,3,6-trimethylbenzoic acid (17) whose melting point agreed with the literature and whose nmr showed two adjacent hydrogens.4

(3) M. S. Newman, D. Pawellek, and S. Ramachandran, J. Amer. Chem. Soc., 84, 995 (1962).

		Lethality	Myotonic
Nø.	Ring substitution	$(1, D_{59})$	acc" (EDm)
1	2-CH_3	422	>100
2	$3-CH_{3}$	562	>100
:3	$2,3-(CH_3)_2$	1000	142
4	$2,4-(CH_4)_2$	>100t)	>200
5	$2,5-(CH_4)_2$	>1000	57
6	$2,6-(CH_{a})_{2}$	178	72
7	$3,4-(CH_3)_2$	316	>200
8	$3,5-(CH_3)_2$	750	>100
9	$3,5-(CF_{a})_{a}$	100	>100
10	2-CH ₃ , 3-Cl	>1000	178
11	2-CH ₃ , 6-Cl	422	89
12	$2,5-\mathrm{Cl}_2$	237	100
13	$2,6-Cl_2$	316	f12
14	$3,5-\mathrm{Cl}_2$	237	178
15	2,5-Br ₂	178	112
16	$3,5$ - Br_2	562	>200
17	$2,3,6-(CH_3)s^c$	>1000	21.9
18	$2,4,5-(CH_3)_{3}$	316	100
19	$2, 4, 6-(CH_3)_3$	562	>100
20	$2,3,6-{ m Cl}_3{}^d$	178	89
21	$2_{1}3_{2}5-1_{3}$	562	>50
22	$2,3,5,6-(CH_3)_4$	750	6.3
23	3-Cl, 2,5,6-t(CH ₃) _a ^c	562	4.2
24	2-Cl, $3,5,6$ -(CH ₃) ₃ ^e	750	7 2
25	$3,5-[CH(CH_3)_2]_2, 2,6-(CH_3)_2^c$	422	>100
26	2,3,4,5-CL	562	>100
27	2,3,5,6-Cl ₄	237	25
28	2,3,4,5,6-(CH ₃) ₅ -	>200	20
29	2, 3, 4, 5, 6-Cl ₅	178	32
30	$2,3,4,5,6-F_{5}$	178	100
31	Phenanthrene-9-carboxylic acid	>1000	60.3
32	Anthracene-9-carboxylic acid	750	8.0
33	1,2,3,4,5,6,7,8-Octahydro-		
	anthracene-9-carboxylic acid		46.7

^a Compounds were administered to mice intraperitoneally. The values (mg/kg) are approximations with an accuracy of about $\pm 100^{\circ}$ ($to - 50^{\circ}$). ^b Compounds were suspended in 0.25°). methylcellulose solution and injected intraperitoneally into mice. Doses were advanced in 0.5-log intervals with four animals at each dose. Median doses were calculated by the method of Spearman and Karber (D. J. Finney, "Statistical Method in Biological Assay," Hafner Publishing Co., New York, N. Y., 1952, p. 524). ^c See Experimental Section for method of preparation. ^d Sixty per cent material from Heyden Newport Chemical Corp. was purified by the method of J. Muir, British Patent 909,216 (1962); Chem. Abstr., 58, 4476e (1963). ^c The authors are indebted to Dr. Gerald Bakker, Earlham College, for a sample of this acid.

The isomer resistant to hydrogenolysis was easily separated and nmr showed it to be the component having a single peak at δ 7.18 (no H ortho to the COOH)

R. G. Smith, J. Pharmacol. Exp. Ther., 54, 87 (1935); N. I., R-Bucher, Proc. Soc. Exp. Biol. Med., 63, 204 (1946); O. Krayer and G. H. Acheson, Physiol. Rev., 26, 383 (1946).

⁽²⁾ A. II. Tang, L. A. Schroeder, and H. H. Keasling, to be published.

⁽⁴⁾ For example, 2.3,6-trimethylbenzoic acid (17), in the aromatic region, shows an AB pattern at about δ 7.0 and 7.1 ($J_{AB} = 8 \text{ eps}$) but 2,4.5-trimethylbenzoic acid (18) shows two singlets at δ 7.09 and 7.7 t.

and must therefore be 24, the structure proved by Newman.³ That the chlorine in 23 was in the 3 rather than the 4 position was shown by decarboxylation of 23 to give 1-chloro-2,4,5-trimethylbenzene (melting point agrees with the literature and nmr shows *p*-hydrogens, singlets at δ 6.90 and 7.04). The structure of 23 was confirmed through synthesis (Scheme II). 2,3,6-Trimethylbenzoic acid, prepared by carbonation of the Grignard reagent⁵ from 2-bromo-1,3,4-trimethylbenzene,⁶ was chlorinated. As expected the chlorine entered predominantly *meta* to the carboxyl group.

Pharmacology.—The typical myotonic symptoms produced by these benzoic acids in mice consist of a temporary rigid extension of the hind legs when the animal is disturbed. At higher doses, these extensor spasms may occur continuously. The overt appearance is readily distinguishable from convulsion caused by central stimulation. The LD₅₀'s and ED₅₀'s for myotonic symptoms are listed in Table I. Except as noted, these compounds were obtained from commercial sources or prepared by published procedures. A large number of other close analogs of the active compounds were also tested but were found inactive under the conditions of the test. These include esters and amides of active acids, analogous sulfonic acids, and compounds containing an acetyl in place of the carboxyl group. Other groups such as OH, OR, NH₂, CONH₂, or additional COOH on the benzene ring invariably proved detrimental to the myotonic activity in mice.

A study of Table I shows that most of the potent compounds for myotonic activity have Cl or CH₃ substitutions at 2,3,5,6 positions (22, 23, 24, 27). Larger alkyl groups (25, 33) or substituents at the 4 position (18 and 19 vs. 17; 26 vs. 27; 4 and 7 vs. 3, 5, and 6; 28 vs. 22; 31 vs. 32) yield compounds with weaker activity. Comparison of 22 vs. 25 and 32 vs. 33 suggests that a relatively flat molecule is more favorable for myotonic activity. The weaker activity of 1,2,3,4,5,6,-7,8-octahydrophenanthrene-9-carboxylic acid compared to its fully aromatic parent compound (31) has been previously observed.¹ Finally, myotonic activity does not seem to bear any relationship to the potency for lethality.

Experimental Section⁷

Mixture of 2-chloro-3,5,6-trimethylbenzoic acid (24) and 3chloro-2,5,6-trimethylbenzoic acid (23) was prepared in two steps from 2,4,5-trimethylphenol as described by Newman, *et al.*³ In the work-up the 4-trichloromethyl-2,4,5-trimethyl-2,5-cyclohexadieuone was chromatogaphed instead of distilled using silica gel and eluting with CH₂Cl₂. Some lots of the final mixed acids were sublimed at 110-120° (0.2 mm). These procedures removed tars and other impurities but effected little if any separation of the isomeric acids. The product was finally crystallized from benzene giving white crystalline material, mp $\sim 154-160^{\circ}$. By nmr and glpc (as the Me ester prepared with CH₂N₂) various lots were found to consist of 55-70% of 24 and 30-45% of 23. A sample kindly supplied by Dr. Newman³ was found by nmr also to be a similar mixture of these two acids.

Methyl 2-Chloro-3,5,6-trimethylbenzoate and Methyl 3-Chloro-2,5,6-trimethylbenzoate.—A solution of 59.4 g (0.3 mole) of the above mixture (55% 24 and 45% 23) in 200 ml of C₆H₈ and 150 ml of SOCl₂ was refluxed for 4 hr. The solvent was removed under vacuum, and C₆H₆ was added and removed giving the acid chloride as a pale yellow oil. This was dissolved in C₆H₈ (200 ml) and slowly added, with stirring, to 600 ml of MeOH and 18 ml (0.33 mole) of dry pyridine. After refluxing for several hours and removing the solvent, the residue was dissolved in ether, washed (H₂O, dilute HCl, dilute NaOH, H₂O), and dried (Na₂SO₄). After filtration and removal of the ether the product was distilled giving 61.3 g (96%) of colorless liquid, bp 80.5° (0.005 mm), which soon partly solidified, fp ~25-39°. Anal. (C₁₁H₁₈ClO₂) C, H, Cl.

Small samples of this mixture in CHCl₃ were repeatedly injected into a 2-m glpc column packed with 10% Carbowax 20M

⁽⁵⁾ H. A. Smith and J. A. Stanfield, J. Amer. Chem. Soc., 71, 81 (1949).
(6) G. Lowe, F. G. Torto, and B. C. L. Weedon, J. Chem. Soc., 1855 (1958).

⁽⁷⁾ Melting points were taken in capillary tubes with a partial immersion thermometer. Calibration of the apparatus against standard compounds showed no need for correction. Ir speetra on all new compounds were in accordance with the proposed structures. Nmr spectra were taken on a Varian A-60 instrument. Where analyses are indicated only by symbols of the elements or functions, analytical results obtained for these elements or functions were within $\pm 0.4\%$ of the theoretical values.

on Diatoport-S 80-100 mesh at 125° . The fractions were collected in Dry Ice cooled traps yielding 77 mg of a fiquid and 60 mg of a crystalline solid, mp 67.5-68.5°.

A 48-g sample of the partly solid mixture of Me esters was filtered at room temperature. The crystals were washed with cold pentane and recrystallized three times using about 50 ml of pentane for each crystallization and cooling to -2° . This gave 3 g of white crystals, mp 67-68°. A mixture melting point with the crystalline sample separated by glpc above gave no depression (mmp 67.5-68.5°). By reworking the filtrates a total of 11.4 g (53% of the methyl 3-chloro-2,5,6-trimethylbenzoate known to be present) was obtained having mp 65-67° or higher. Numr in CDCl₄ indicated only one isomer, showing five singlets at δ 7.20, 3.90, 2.25, and 2.15. Anal. (CnH₁₄ClO₂) C, H, Cl.

3-Chloro-2,5,6-trimethylbenzoic Acid (23).—A mixture of 11.1 g (0.0522 mole) of methyl 3-chloro-2,5,6-trimethylbeuzoate and 50 ml of concentrated H₂SO₄ was well shaken and the resulting nearly colorless solution was allowed to stand for 1 hr. It was then poured into 400 ml of ice water and after standing for 1 hr the white solid was collected, well washed (H₂O), dried, and recrystallized from C₆H₈ giving 10.6 g (100%) of white crystals, mp 162–164°. Nmr in CDDN(CD₃); indicated only one isomer showing four singlets at δ 7.28, 2.30, 2.2.5, and 2.20. Anal. (C₁₆H₁₀ClO₂) C, H, Cl.

2-Chloro-3,5,6-trimethylbenzoic Acid (24).—The liquid ester from the glpc separation above was mixed with 1 ml of concentrated H₂SO₄, shaken for 15 min, and diluted with H₂O. The acid was extracted with ether, washed (H₂O), and dried (Na₂SO₄). Filtration, concentration, and crystallization from C₆H₅ gave 35 mg of white crystals, mp 170.5-171.5°.

Crude filtrates from the above crystallizations of the methyl esters from which no more pure ester could be easily crystallized were evaporated to dryness and mixed with 150 ml of concentrated II₂SO₄. After standing for 4 hr the solution was poured into ice water giving 26.7 g of white solid. This was dissolved in 230 ml of EtOH and hydrogenated for 7 hr with 4 g of 30% Pd-C at 3.5 kg/cm^2 and $80-90^\circ$. After filtration and removal of the solvent the residue was dissolved in dilute NH4OH, washed with ether, and acidified. The crude acid was extracted with ether, washed (H₂O), and dried (Na₂SO₄). Filtration and evaporation gave 20.6 g of white solid which was recrystallized twice from $C_6 H_6$ yielding 12.8 g (53% of the 2-chloro-3,5,6-trimethylbenzoic acid known to be in the original mixture) of white crystals, mp 171-172.5°. A mixture melting point with the acid obtained from the liquid ester separated by glpc above gave no depression (mnip $171-172^{\circ}$). Anal. (C₁₀H₁₁ClO₂) C, H, Cl.

2,3,6-Trimethylbenzoic Acid (17).--A hydrogenolysis similar to the above was carried out on 19.6 g of a mixture of acids prepared by the Newman procedure³ and found by mmr to be a mixture of 45% 23 and 55% 24. After crystallizing out the acid 24, the benzene filtrates were fractionally crystallized from C₆H₆ and hexane to isolate the more soluble component. A small sample was thus obtained of pure 2,3,6-trimethylbenzoic acid, mp 109-111° (lit.⁸ mp 110.5-112°). This was found to be pure by glpc, ir, and mmr. Anal. (C₁₀H₁₂O₂) C, II. Decarboxylation of 3-Chloro-2,5,6-trimethylbenzoic Acid.--A

Decarboxylation of 3-Chloro-2,5,6-trimethylbenzoic Acid.—A mixture of 1.0 g (0.005 mole) of 3-chloro-2,5,6-trimethylbenzoic acid (**23**), 0.2 g of CuO, and 3.4 ml of quinoline was heated and slowly distilled from a bath at 235–255° during 6.5 hr. The distillate was dissolved in pentane, and washed (dilnte HCl, H₂O, dihute NaOH, H₂O). The pentane solution was dried (CaCl₂ and Drierite), filtered, and distilled. After removing the pentane the residue was distilled at a bath temperature of 100–130° (12 mm) giving 0.65 g (85%) of white solid, mp 59–66°. This was sublimed at 50–65° (12 mm) giving 0.55 g of crystals, mp 69–71° (dit.³ for 1-chloro-2,4,5-trimethylbenzene, mp 72.5–73.5°). Nurr and ir are in accordance with the proposed structure. Anal. (C₂H₂,Cl)

2,3,6-Trimethylbenzoic Acid⁵ (17) from Pseudocumene.-2-Bromo-1.3,4-trimethylbenzene was prepared by the method of Lowe.^{6,9} Griguard reagent was prepared from 199.1 g (1.0 mole) of this material, 36.5 g (1.5 g-atoms) of Mg, and 750 ml of THF. The reaction was started with 2.5 ml of 1,2-dibromoethane and

(8) L. 1. Smith and C. L. Agre, J. Amer. Chem. Soc., 60, 652 (1938).

a small crystal of l_2 . The solution was slowly decanted with vigorous stirring into 2 kg of crushed Dry Ice and 1.54, of absolute ether. After standing overnight the mixture was decomposed with ice and HCl and the product was extracted with ether. The acid was extracted into aqueons NaOH which was washed (ether) and acidified with HCl. The oily acid was extracted with ether, washed (H₂O), and dried (Na₂SO₄). Filtration and removal of the solvent gave 120 g of white solid which was recrystallized from hexme yielding 68 g (44 ℓ_4) of white crystals, up 110–111.5°. More could be obtained from the filtrates. A mixture mething point with the acid obtained by hydrogenolysis of the chlore acids above showed no depression tump 109.5 H2° i.

3-Chloro-2,5,6-trimethylbenzoic Acid (23) by Chlorination. To a solution of 1.64 g (0.01 mole) of 2,3,6-trimethylbenzoic acid (17) in 25 ml of AcOH was added 7.2 ml (0.014 mole) of a 1.53 M Cl₂ solution in CCl₄. The yellow solution was scaled in a heavy glass pressure tube and heated for 16.5 hr in a steam bath. After cooling, the nearly colorless solution was evaporated *in racuo* and water was added. The crude product was extracted with other, washed (H₂O), and evaporated. C₆H₆ was added and evaporated mider vacuum giving 2.1 g of white solid, mp 118–145°. The ir spectrum was practically identical with that of 23. Recrystallization from 15 ml of benzene gave 0.53 g (27%) of white crystals, mp 152–159°. Two more crystallizations from benzene gave 0.21 g of white crystals, np 159–162°. A mixture melting point with 23, above, showed no depression.

1-Bromo-3,5-diisopropyl-2,6-dimethylbenzene. -- A solution of 190.3 g (1 mole) of 4,6-diisopropyl-1,3-dimethylbenzene¹⁹ in 200 nd of CCl_4 containing a few crystals of FeBr₄ and of l_2 was brominated at room temperature during 7 hr with 168 g (1.05 moles) of Br₂ in 100 ml of CCl₄. After standing overnight the solution was washed (H₂O, dilute NaOH, H₂O) and dried (CaCl₂). After removing the solvent the oil was mixed with a solution of 10 g of Na in 200 ml of EtOH, refluxed for 1 hr, and allowed to stand overnight. Water was added, and the product was extracted (ether) and dried (CaCl₂). After filtration and removal of the solvent the product was distilled twice through an 85-cm, helices-packed column yielding 183 g (68%) of colorless liquid which solidified in the receiver, bp 118-120° (2.5 mm), fp 54.5~57°. (lipe on a column packed with Carbowax 20M on Diatoport-S indicated this was 99% pure. A middle fraction pressed between filter papers had mp 59-61%. Nmr in CDCl₃ indicated that the bromine had entered, as expected, in less hindered position between the methyl groups: δ 7.12 (s, 1), 3.20 (septet, 2, J = 7 cps, H₂), 2.46 (S, 6), and 1.23 ppm (d. 12, J = 7 cps, H₂). Anal. (C₉₄H₂,Br) C, H, Br.

3,5-DÎisopropyl-2,6-dimethylbenzoic Acid (25).- Grignard reagent was prepared from 80.7 g (0.3 mole) of 1-bronno-3,5-diisopropyl-2,6-dimethylbenzene, 9.72 g (0.4 g-atom) of Mg, and 175 ml of THF. The reaction was started with 0.5 ml of 1,2-dibronoethane. The solution was poured slowly, with vigorons stirring, into a very large excess of ernshed Dry Ice in absolute ether. After standing until the excess Dry Ice evaporated, the mixture was decomposed with dilute HCl and the ether solution was washed (H₂O) and extracted with dilute NaDH. The basic aqueous solution was washed (ether) and acidified with HCl giving 59.3 g of crystalline acid, mp 196-204°. Recrystallization from 600 ml of methyleyclohexane yielded 51 g (72°(1) of white crystals: mp 206-208°; mm (CDCl₄), δ 11.21 (s, 1), 7.24 (s, 1), 3.17 (septet, 2, J = 7 cps, H₂), ..., 1nal, (C₁₅H₂₇O₂) C, H.

Acknowledgments. The authors wish to thank Professor Melvin S. Newman for consultation and advice during this work. They thank The Upjohn Company's Physical and Analytical Chemistry Unit for analyses and spectra, especially Mr. John F. Zieserl, Jr., for mmr interpretation and Mr. George E. Bronson for glpc separations. They are also grateful to Dr. Clifford Y. Peery, Dr. Thomas L. Lemke, and Mr. Raymond F. Tripp for chemical preparations, to Mr. Herman J. Triesenberg for biological technical assistance, and to Dr. Richard V. Heinzelman and Dr. Hugh H. Keasling for guidance.

⁽⁹⁾ This material distilled smoothly at 82° (5 mm) and appeared pure by glpc. However, nmr in CDCls, in addition to the singlets at δ 6.96, 2.36, and 2.25, showed small peaks at δ 7.25 and 2.08 which may be due to the 6-brone isomer.

⁽¹⁰⁾ From Aldrich Chemical Co., Milwapkee, Wis-